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Abstract. We discuss the properties of equilibrium states in an autoassociative memory model
storing hierarchically correlated patterns (hereafter, hierarchical patterns). We will show that
symmetric mixed states (hereafter, mixed states) are bistable on the associative memory model
storing the hierarchical patterns in a region of the ferromagnetic phase. This means that the
first-order transition occurs in this ferromagnetic phase. We treat these contents with a statistical
mechanical method (SCSNA) and by computer simulation. Finally, we discuss a physiological
implication of this model. Sugase et al (1999 Nature 400 869) analysed the time-course of the
information carried by the firing of face-responsive neurons in the inferior temporal cortex. We also
discuss the relation between the theoretical results and the physiological experiments of Sugase et
al.

1. Introduction

There are two kinds of hypotheses regarding internal representations of memory items in
the brain. First, there is the ‘distributed representation’ hypothesis, which assumes that our
memory items are encoded by neuron activity patterns. But another type of hypothesis (e.g.,
the ‘grandmother cell’ hypothesis) has been proposed, where the memory items are represented
by the excitation of corresponding neurons: that is, a ‘local representation’ hypothesis. Let
us consider a neural network model consisting of N neurons. The number of memory items
in the local representation is O(N). One might think that the number of memory items in
the distributed representation is O(2N) in the case of storing binary patterns. However, this
consideration is meaningless. If we consider error correcting abilities, this becomes O(N)

on the basis of the statistical mechanical theories (for example [2]). One of the remarkable
advantages of the distributed representation is that the relationship between the memory items
is naturally implemented by the distance of memory patterns. However, many studies on
associative memory models have been confined to those with uniformly distributed patterns.

¶ Author to whom correspondence should be addressed.
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Thus, we should discuss a model that stores some structural patterns. We will extend the
conventional SCSNA [3] to a generalized SCSNA in order to treat a model with any structural
pattern and a general class of output functions of neuron.

When an associative memory model is made to store memory patterns as a result of
correlation learning, a pattern, which has an uniform overlap with some of the stored memory
patterns, automatically becomes the equilibrium state of the model. This is called the mixed
state. It is not appropriate to think that this mixed state is a side-effect and/or that it is
unnecessary for information processing. Amari has discussed a ‘concept formation’ using the
stability of mixed state [4]. The correlated attractor [5, 6] accounting for the physiological
experiments by Miyashita [7] can be interpreted as a mixed state in a broad sense. Recently,
Parga and Rolls [8] used the mixed state in their research on the mechanism of invariant
recognition with a coordinate transformation in the visual system.

The aim of this research is to study the properties of mixed states in the autoassociative
memory model storing hierarchical patterns by utilizing the generalized SCSNA and computer
simulation. First, we discuss a model that stores patterns in which a two-stage hierarchy exists.
With the generalized SCSNA, we derive the order parameter equations for the equilibrium state
in this model. By solving the obtained equations, we show that two kinds of mixed states coexist
in a particular region of the retrieval phase (ferromagnetic phase). It is a characteristic of the
two kinds of mixed states that they have different values of cross-talk noise variances, that is,
they are influenced by the uncondensed patterns in different ways. This kind of bistability in
the retrieval phase has not been previously reported. We will show that the bistability of mixed
states does not depend on the number of patterns in the same cluster. Generally speaking, it is
not so easy to confirm the multi-stable states by computer simulation. However, we succeed
in confirming the bistability of the mixed states by computer simulation after considering the
qualitative properties of the retrieval dynamics in this model. Next, we treat a model storing a
set of hierarchical patterns and uniformly distributed patterns in order to investigate universality
of the bistability. From these theoretical results, we found that a bistability of mixed states
also exists in this model. Contrary to these models, such bistability of mixed states does not
exist in a model where the contribution of uncondensed patterns to the synaptic couplings is
replaced by the spin glass type interaction. We will discuss the reason for this by using the
SCSNA.

Recently, Sugase et al have reported interesting phenomena concerning the temporal
dynamics of face-responsive neurons in the inferior temporal (IT) cortex [1]. In the discussion,
we will examine the relation between the obtained results and the physiological experiments
by Sugase et al.

2. Model

Let us consider a recurrent neural network consisting of N neurons with an output function
F(·). We employ the synchronous dynamics,

xt+1
i = F

( N∑
j �=i

Jij x
t
j

)
(1)

where xt
i represents a state of the ith neuron at discrete time t , and discuss the case of the

thermodynamics limit (N → ∞). Jij in the above equation denotes a synaptic coupling from
the j th neuron to the ith neuron. In this work, we discuss the equilibrium state of equation (1).
For simplicity, we treat a two-stage hierarchy, which is one of the simplest cases. This can be
easily extended to more complex hierarchies. One can use many procedures to make the set
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of ultrametric patterns, but we employ the following method. Each component ξµ,ν

i of pattern
ξµ,ν is a random variable drawn from the following probability distributions:

P [ξµ

i = ±1] = 1
2 i = 1, 2, . . . , N µ = 1, 2, . . . , p (2)

P [ξµ,ν

i = ±1] = 1 ± bξ
µ

i

2
ν = 1, 2, . . . , s (3)

with 0 � b � 1. The distance between patterns ξµ,ν is expressed by

E[ξµ,ν

i ξ
µ′,ν ′
i ] = δµµ′(B)νν ′ (4)

(B)νν ′ ≡ δµµ′(δνν ′ + b2(1 − δνν ′)) (5)

where E[·] stands for an average with respect to the probabilities distributed in equations (2)
and (3), and δµµ′ is the Kronecker’s δ defined as

δµµ′ =
{

1 (µ = µ′)
0 (µ �= µ′).

(6)

According to the definition of the matrix B in equation (5), B is s × s matrix. As shown
in equation (4), the memory patterns ξµ,ν have a two-stage ultrametric structure. (B)νν ′ in
equation (4) stands for the element in the νth row, the ν ′th column of matrix B. ξµ,ν are ps

uniformly generated patterns when b = 0, while ξµ,ν in the µth cluster are the same when
b = 1.

We employ the simple Hebbian rule as the learning rule, and the synaptic coupling Jij is
set to

Jij = 1

N

αN∑
µ=1

s∑
ν=1

ξ
µ,ν

i ξ
µ,ν

j (7)

where α = p

N
. Since the number of clusters is αN , we call α the loading rate. ξµ is not

explicitly used for the learning rule. We discuss two kinds of models. One is the previously
defined model with the couplings Jij given by equation (7), which we call model 1. The other
model, model 2, is shown here with the following couplings Jij :

Jij = 1

N

s∑
ν=1

ξ
1,ν
i ξ

1,ν
j +

1

N

αN∑
µ=2

ξ
µ

i ξ
µ

j . (8)

We will examine the stability of the memory pattern and a mixed state which has a uniform
overlap with an odd number of memory patterns in the same cluster. There exist mixed states
which have finite overlaps with memory patterns in different clusters. However, we do not
discuss this topic in this paper.

3. A generalized SCSNA

There are two kinds of statistical–mechanical theories treating the equilibrium properties of
associative memory models. One is based on the SCSNA proposed by Shiino and Fukai [3].
The other one is the replica theory, which has been used to analyse the equilibrium states
in model 1 [9]. However, the replica theory cannot be applied to a system where the free
energy cannot be defined (e.g., a model with a nonmonotonic output function [10] or an
oscillator associative memory model [11]), while the SCSNA can treat these systems without
the energy function. Since previous studies with the SCSNA have mainly focused on systems
with uniformly distributed patterns, the SCSNA cannot be directly applied to model 1.
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We will extend the previously proposed SCSNA to a generalized SCSNA in this section
in order to treat a model storing a set of structural patterns σρ(ρ = 1, 2, . . . , α̂N) randomly
generated by an independent identical probability distribution with respect to i. The correlation
matrix (C)ρρ ′ between the two patterns σρ and σρ ′

is given by

(C)ρρ ′ ≡ 1

N

α̂N∑
i=1

σ
ρ

i σ
ρ ′
i (9)

= E[σρ

i σ
ρ ′
i ]. (10)

We consider a recurrent network consisting of N neurons with the output function F(·) and
synaptic couplings Jij given by

Jij = 1

N

α̂N∑
ρ=1

σ
ρ

i σ
ρ

j . (11)

Since the number of memory patterns is α̂N , α̂ is defined as the loading rate in this model.
ξµ,ν or B in equation (4) is an example of σρ or C in equation (10), respectively,

σρ ↔ ξµ,νρ = s(µ − 1) + ν (12)

(C)ρρ ′ ↔ δµµ′(B)νν ′ (13)

α̂ ↔ αs. (14)

We consider the case where the state of neurons at discrete time step t , xt , is synchronously
updated,

xt+1
i = F

( N∑
j �=i

Jij x
t
j

)
(15)

and discuss the equilibrium state x with the limit t → ∞. We introduce a set of rotated
memory patterns, σ̄ = {σ̄i

1, σ̄i
2, . . . , σ̄i

α̂N }, as

σ̄
ρ

i = 1√
κρ

α̂N∑
ρ ′=1

Wρρ ′σ
ρ ′
i (16)

W = (w1,w2, . . . ,wα̂N )T . (17)

wρ(ρ = 1, 2, . . . , α̂N) and κρ(ρ = 1, 2, . . . , α̂N) in the above equations represent the ρth
α̂N -dimensional normalized eigenvector of matrix C and the ρth eigenvalue of matrix C

for wρ , respectively. Each component σ̄
ρ

i is statistically dependent (independent) on ρ (i),
respectively, and satisfies the following conditions:

1

N

N∑
i=1

(σ̄
ρ

i )2 = 1 (18)

1

N

N∑
i=1

σ̄
ρ

i σ̄
ρ ′
i ∼ O

(
1√
N

)
ρ �= ρ ′. (19)

Using the rotated patterns, we can rewrite Jij in equation (11) as

Jij = 1

N

α̂N∑
ρ=1

κρσ̄
ρ

i σ̄
ρ

j . (20)

The overlaps m̄ρ between the equilibrium state x and σ̄ρ are defined by the following equation:

m̄ρ = 1

N

N∑
i=1

σ̄
ρ

i xi . (21)
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If one assumes that the equilibrium state x has nonzero overlaps with s̄ rotated patterns
σ̄ρ(1 � ρ � s̄), we can derive the SCSNA order parameter equations [12] (see appendix A):

m̄ρ =
∫

Dz〈σ̄ ρY (z, σ̄ 1, σ̄ 2, . . . , σ̄ s̄ )〉σ̄ (22)

q =
∫

Dz〈(Y (z, σ̄ 1, σ̄ 2, . . . , σ̄ s̄ ))2〉σ̄ (23)

U = 1√
α̂r

∫
Dz z〈Y (z, σ̄ 1, σ̄ 2, . . . , σ̄ s̄ )〉σ̄ (24)

Dz = dz√
2π

exp

(−z2

2

)
(25)

Y (z, σ̄ 1, σ̄ 2, . . . , σ̄ s̄ ) = F

( s̄∑
ρ=1

κρσ̄
ρm̄ρ + "Y(z, σ̄ 1, σ̄ 2, . . . , σ̄ s̄ ) +

√
α̂rz

)
(26)

r = q

∫ 1

0
du

κ(u)2

(1 − κ(u)U)2 = q

α̂N
Tr

(
C2

(I − CU)2

)
(27)

" = α̂

∫ 1

0
du

κ(u)2U

1 − κ(u)U
= 1

N
Tr

(
C2U

I − CU

)
(28)

where 〈· · ·〉σ̄ stands for an average over the condensed patterns σ̄ = (σ̄ 1, σ̄ 2, . . . , σ̄ s̄ ). We
can express the sum of κρ in terms of an integration along continuous eigenvalue κ(

ρ

α̂N
) ≡ κρ

for p,N → ∞. Note that the analytical expressions of r and " given by equations (27)
and (28) depend only on the matrix C and do not explicitly depend on the condensed patterns
σ̄ρ(ρ = 1, 2, . . . , s̄). This fact leads to the following order parameter equations for the
equilibrium state having nonzero overlaps mρ = 1

N

∑N
i=1 σ

ρ

i xi with s original memory patterns
σρ(ρ = 1, 2, . . . , s):

mρ =
∫

Dz〈σρY (z, σ 1, σ 2, . . . , σ s)〉σ (29)

q =
∫

Dz〈(Y (z, σ 1, σ 2, . . . , σ s))2〉σ (30)

U = 1√
α̂r

∫
Dz z〈Y (z, σ 1, σ 2, . . . , σ s)〉σ (31)

Dz = dz√
2π

exp

(−z2

2

)
(32)

Y (z, σ 1, σ 2, . . . , σ s) = F

( s∑
ρ=1

σρmρ + "Y(z, σ 1, σ 2, . . . , σ s) +
√

α̂rz

)
(33)

r = q

α̂N
Tr

(
C2

(I − CU)2

)
(34)

" = 1

N
Tr

(
C2U

I − CU

)
. (35)

Note that the off-diagonal terms of the matrix C between the condensed and uncondensed
pattern spaces can be neglected if s̄ is taken to be sufficiently large but O(1).
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4. Results

We discuss the case where F(·) = sgn(·) defined by

sgn(u) =
{

1 (u � 0)

−1 (u < 0).
(36)

First, we will show the results of the analysis for the equilibrium properties in model 1. We
apply the generalized SCSNA proposed in section 3 to model 1. We rewrite equation (13) as

C = B
⊕

B
⊕

, . . . ,
⊕

B︸ ︷︷ ︸
p

. (37)

The matrix B has the eigenvalues λ1 = 1 + (s − 1)b2, λν = 1 − b2(2 � ν � s). One assumes
that the overlaps m1,ν = 1

N

∑N
i=1 ξ

1,ν
i xi(ν = 1, 2, . . . , s) have values of O(1). By considering

the relations given by equations (12), (14) and (37), we obtained the following SCSNA order
parameter equations for this model:

m1,ν =
〈
ξ 1,νerf

(∑s
σ=1 ξ 1,σm1,σ

√
2αr

)〉
ξ1

(38)

q = 1 (39)

r = q

s∑
ν=1

(
λν

2

(1 − λνU)2

)
(40)

U =
√

2

παr

〈
exp

(
−

( s∑
σ=1

ξ 1,σm1,σ

√
2αr

)2)〉
ξ1

(41)

where 〈. . .〉ξ1 denotes an average over the condensed patterns ξ1 = (ξ1,1, ξ1,2, . . . , ξ1,s). In
the above equations, we omitted the " terms corresponding to equation (35) by applying the
Maxwell rule. The results coincided with those of the theoretical analysis using the replica
theory [9]. For simplicity, we show the case where s = 3, 5. Figure 1 shows a phase diagram of
numerical solutions for equations (38)–(41). The critical loading rate of a memory pattern and
that of a mixed state are plotted against b. The triangular area shown in the figure represents
the region where two kinds of mixed states coexist. We call this region the ‘bistable region’. In
this paper, a mixed pattern which is similar to sgn(

∑s
ν=1 ξµ,ν), is defined as ηµ, and the other

one, which is reported here for the first time, is defined as η̃µ. As shown in [3], the SCSNA
assumes the stability of equilibrium state. There is no free energy in the SCSNA formalism.
However, we discuss the present model using the equilibrium statistical mechanics [9] since it
has the energy function. From the statistical–mechanical viewpoint, the first-order transition
occurs at the dashed curve in figure 1. In the region below the dashed curve, the free energy
of ηµ is less than that of η̃µ, while the free energy of ηµ is larger than that of η̃µ in the region
above the dashed curve.

We will examine two typical examples in the bistable region. We consider the case where
the retrieval pattern is ξ1,1. α

η
c (α

η̃
c ) is defined as the critical loading rate of η1(η̃1

). First, we
discuss the region in which α

η
c < α

η̃
c as follows. Figure 2(a) shows how the overlaps between

the equilibrium state and the retrieval pattern ξ1,1 depend on α. Two kinds of mixed states
coexist when 0.015 00 < α < 0.017 65, as shown in figure 2(a). From the numerical analysis,
the value of the cross-talk noise variance expressed by r in equation (40) becomes larger in
the order ξ1,1, η1, η̃1. The variation of the overlap 1

N

∑N
i=1 ξ

1,1
i η̃1

i with α is larger than that of
1
N

∑N
i=1 ξ

1,1
i η1

i with α, as shown in figure 2(a). Thus, we found that η̃1 is more influenced by
the uncondensed patterns than η1 is. We will transform the order parameter equations given
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Figure 1. Variation of critical loading rate of memory pattern or mixed states with b. Two kinds
of mixed states coexist in the triangular region.
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Figure 2. (a) Typical example (b = 0.61, s = 3) of α dependency of overlap between equilibrium
state and retrieval pattern. (b) Solutions of transformed order parameter equation in one variable

around the bistable region when α
η
c < α

η̃
c .

by equations (38)–(41) into an equation in one variable in order to qualitatively understand
the nature of this bistability. Considering that m1,ν is the same value for any ν in the mixed
states, we can transform the order parameter equations representing the mixed states into the
equation in one variable y by replacing m1,ν√

2αr
with yν (see appendix B). Figure 2(b) shows the

graphical solutions of the transformed equation around the bistable region. Each intersection
of the y-axis and function )(y, α, b = 0.61, s = 3) represents the corresponding solution.
Figure 2(b) shows that two kinds of mixed states, that is, η1 and η̃1, coexist at α = 0.016. On
the other hand, there is no such bistability in the retrieval region except for the triangle region.
Figure 1 shows that bistability also exists for s = 5. By analysing the graphical solutions of
the transformed equation for various values of s, we deduced that the bistability of the mixed
states exists for any value of s in model 1.
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around the bistable region when α
η̃
c < α

η
c .

We performed computer simulation to confirm the bistability of mixed states, and
obtained equilibrium states, which are expressed by the dotted curve (A) in figure 2(a), as
follows. We first got an equilibrium state at α = 0.0003 < α

η
c with the initial state set

to sgn(
∑s

ν=1 ξ1,ν). After that, equilibrium states for various α were obtained by gradually
increasing the value of α from α = 0.0003. Since the simulation results mostly agreed with
the theoretical results, we could not distinguish between them, as shown in this figure. The
dotted curve (B) in figure 2(a) was obtained as follows. An equilibrium state at α = 0.019
(αη

c = 0.017 65 < α < α
η̃
c = 0.019 82) was obtained by gradually increasing the value of α

fromα = 0.0003 in computer simulation. Using this equilibrium state, we got each equilibrium
state at the corresponding α by gradually decreasing the value of α from α = 0.019. We
carried out computer simulation with N = 10 000; a typical example is shown in figure 2(a).
Figure 3(a) shows a typical example (b = 0.55, s = 3) of the case where α

η̃
c < α

η
c . Two kinds

of mixed states coexisted when 0.011 64 < α < 0.013 89. The axes in this figure are the same
axes as in figure 2(a). Figure 3(b) shows the graphical solutions of the transformed equation in
one variable around the bistable region when s = 3, b = 0.55. This figure shows that two kinds
of mixed states, that is η̃1 and η1, are stable at α = 0.0125. The dotted curve (C) in figure 3(a)
was obtained as follows. We first got an equilibrium state at α = 0.0003 with the initial state
set to sgn(

∑s
ν=1 ξ1,ν). After that, equilibrium states for various α were obtained by gradually

increasing the value of α from α = 0.0003. Since η1 is always stable when α
η̃
c < α < α

η
c ,

an equilibrium state corresponding to η̃1 could not be obtained by computer simulation with
the initial state set to sgn(

∑s
ν=1 ξ1,ν). By considering the qualitative properties of the retrieval

dynamics, we carried out computer simulation in the following manner. Figure 4 shows the
trajectories of temporal evolutions of overlaps of the state xt with ξ1,1 or ξ1,2 respectively,

m1,ν
t = 1

N

N∑
i=1

ξ 1,νxt
i . (42)

The parameters were set to s = 3, b = 0.475, α = 0.0087, N = 40 000. The initial states

were set as P [x0
i = ±1] = 1±m

1,1
0 ξ

1,1
i

2 with an initial overlap m
1,1
0 . Theoretically, m1,2

t = m
1,3
t
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holds over the retrieval process in this case. The crosses in figure 4 represent the theoretically
obtained equilibrium states corresponding to η̃1, η1 and ξ1,1. Two kinds of mixed states (η1,
η̃1 ) and the retrieval pattern (ξ1,1) were stable at this parameter set (figure 4). The dynamics
converged to η̃1, η1, ξ1,1 in order as m

1,1
0 increased, while the cross-talk noise variance for

the equilibrium became larger in the order, ξ1,1, η1, η̃1. This phenomenon occurred because
the cross-talk noise variance of the initial stage of the retrieval process increased as m

1,1
0

decreased. The results showed that equilibrium states corresponding to η̃1 can be confirmed
by computer simulation when the initial state has an appropriate overlap with the retrieval
pattern. The dotted curve (D) in figure 3(a) was obtained as follows. We got an equilibrium
state at α = 0.0135 where the initial state had the appropriate overlap with the retrieval pattern
(ξ1,1). We obtained equilibrium states for various α by increasing (decreasing) the value of α

from α = 0.0135. We carried out computer simulation with N = 10 000; figure 3(a) shows
a typical example. Although the results from this simulation did not always quantitatively
agree with the theory owing to spurious states, we can state that the bistability of two kinds of
mixed states exists in the particular region of the retrieval phase from the hysteresis shown in
figures 2(a) and 3(a).

Let us present the equilibrium properties in model 2. Since the uncondensed patterns
ξµ(µ = 2, 3, . . . , αN) of model 2 satisfy the orthogonal condition E[ξµ

i ξ
µ′
i ] = δµµ′ , the order

parameter equations for this model were derived by replacing equation (40) with equation (45):

m1,ν =
〈
ξ 1,νerf

(∑s
σ=1 ξ 1,σm1,σ

√
2αr

)〉
ξ1

(43)

q = 1 (44)



2734 K Toya et al

r = q

(1 − U)2
(45)

U =
√

2

παr

〈
exp

(
−

( s∑
σ=1

ξ 1,σm1,σ

√
2αr

)2)〉
ξ1

. (46)

We transformed the order parameter equations concerning the mixed states into an equation in
one variable y = m1,ν√

2αr
(see appendix B). As in model 1, we deduced that there is bistability

of mixed states for an arbitrary s. These results indicated that this bistability for mixed states
is not dependent on details of the structure in stored patterns.

5. Discussion

We have shown that bistability of mixed states exists in two typical models, model 1 and
model 2. The reason for this bistability, which is based on the SCSNA, can be explained as
follows. We introduce a model where the contribution of uncondensed patterns to the coupling
Jij is replaced by the spin glass type interaction, and we call this model model 3. The synaptic
coupling of model 3 is defined as

Jij = 1

N

s∑
ν=1

ξ
1,ν
i ξ

1,ν
j + δij (47)

and the symmetric noise δij is independently drawn from the following rule:

δji ∼ N

(
0,

δ2

N

)
(48)

δij = δji (49)

where δ is constant. We obtained the following order parameter equations for this model with
the SCSNA [13]:

m1,ν =
∫

Dz〈ξ 1,νY 〉ξ1 (50)

q =
∫

Dz〈(Y )2〉ξ1 (51)

U = 1

σ

∫
Dzz〈Y 〉ξ1 (52)

Y = F

( s∑
σ=1

ξ 1,σm1,σ + "Y + σz

)
(53)

" = δ2U (54)

Dz = dz√
2π

exp

(−z2

2

)
(55)

σ 2 = δ2q. (56)

This model corresponds to the Sherrington–Kirkpatrick model. In contrast to model 1 or
model 2, a bistability of mixed states does not exist in model 3. Note that the analytical
expression of the cross-talk noise variance expressed by equation (40) or equation (45) is
explicitly expressed as a function of susceptibility U , which is a kind of a cross-talk noise-
enhancement factor caused by the full-feedback nature of the model. However, the analytical
expression of the cross-talk noise variance for model 3, σ in equation (56), is not dependent on
the susceptibility U . The above results show that the bistability is due to not only the hierarchy
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of stored patterns but also analytical expression of the cross-talk noise variance, which is a
function of susceptibility for the model. Naturally, the bistability may exist in more complex
hierarchies because the corresponding cross-talk noise variance is explicitly expressed by a
function of susceptibility as shown in equation (34). From these results, we also found that
the bistability of mixed states does not exist in a strongly diluted system [14].

Finally, we discuss the relation between findings concerning the retrieval process in figure 4
and the physiological experiments of face-responsive neurons in the IT cortex by Sugase
et al [1]. Recently, Sugase et al have analysed the time-course of information carried by the
firing of face-responsive neurons in the IT cortex, while performing a fixation task of monkey
and human faces with various expressions, and simple geometrical shapes. They found that
the initial transient firing correlated well with a rough categorization (e.g., face versus non-
face stimuli). Their results suggest that the neuron firing pattern is initially a superposition of
patterns representing different faces or expressions, but it then converges to a single pattern
representing a specific face or expression. We found that the retrieval dynamics of model 1,
shown in figure 4, can qualitatively replicate the temporal dynamics of face-responsive neurons
as follows [15]. Initially, the network state approaches a mixed state (η̃1 or η1) that is a
superposition of patterns representing different persons or expressions. After that it diverges
from the mixed state, and finally converges to a single memory pattern (ξ1,1) representing a
specific person or expression as shown in figure 4. From the above results, we expect that the
present system may mimic the temporal dynamics of the face-responsive neurons [15]. Details
will be discussed elsewhere.

Acknowledgments

This work was supported in part by Grants-in-aid for Scientific Research nos 09308010 and
11145229 from the Ministry of Education, Science, Sports and Culture of Japan. We are
indebted to Tomoki Fukai for useful discussion.

Appendix A

The internal potential of the ith neuron hi in the equilibrium state of equation (15) is

hi =
N∑

j �=i

Jij xj (A1)

=
α̂N∑
ρ=1

κρσ̄
ρ

i m̄ρ − 1

N

α̂N∑
ρ=1

κρxi. (A2)

The output xi can be formally expressed as

xi = F

( α̂N∑
ρ=1

κρσ̄
ρ

i m̄ρ − 1

N

α̂N∑
ρ=1

κρxi

)
(A3)

= F̃

( α̂N∑
ρ=1

κρσ̄
ρ

i m̄ρ

)
(A4)

where the function F̃ (·) is given in equation (26). Here, we assume that the equilibrium state
x has nonzero overlaps with s̄ rotated patterns σ̄ρ(ρ = 1, 2, . . . , s̄). The residual overlap
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m̄ρ ∼ O(1/
√

N), (s + 1 � ρ � α̂N) can be derived by using a Taylor expansion

m̄ρ = 1

N

N∑
i=1

σ̄
ρ

i F̃

( α̂N∑
ρ ′=1

κρ ′ σ̄
ρ ′
i m̄ρ ′

)
(A5)

= 1

N

N∑
i=1

σ̄
ρ

i x
(ρ)

i + κρUm̄ρ (A6)

= 1

N(1 − κρU)

N∑
i=1

σ̄
ρ

i x
(ρ)

i (A7)

where

x
(ρ)

i = F̃

( α̂N∑
ρ ′ �=ρ

κρ ′ σ̄
ρ ′
i m̄ρ ′

)
(A8)

x
(ρ)

i

′ = F̃ ′
( α̂N∑

ρ ′ �=ρ

κρ ′ σ̄
ρ ′
i m̄ρ ′

)
(A9)

U = 1

N

N∑
i=1

x ′(ρ)

i . (A10)

Substituting equation (A7) into equation (A2), we obtain

hi =
s̄∑

ρ=1

κρσ̄
ρ

i m̄ρ + "xi + z̄i (A11)

where " is defined as

" = 1

N

α̂N∑
ρ=s̄+1

κρ
2U

1 − κρU
(A12)

and z̄i is the effective noise so that

z̄i = 1

N

α̂N∑
ρ=s̄+1

N∑
j �=i

κρ

1 − κρU
σ̄

ρ

i σ̄
ρ

j x
(ρ)

j . (A13)

Note that z̄i is a summation of uncondensed patterns with 〈z̄〉 = 0 and 〈z̄2〉 = α̂r ,

r = 1

α̂N

α̂N∑
ρ=s̄+1

κ2
ρ

(1 − κρU)2

1

N

N∑
j=1

(x
(ρ)

j )2. (A14)

Let us express the sum of κρ in terms of an integration along continuous eigenvalue κ(
ρ

α̂N
) ≡ κρ

for p,N → ∞,

r = q

∫ 1

0
du

κ(u)2

(1 − κ(u)U)2
(A15)

q = 1

N

N∑
i=1

(xi)
2 (A16)

" = α̂

∫ 1

0
du

κ(u)2U

1 − κ(u)U
. (A17)

We can obtain equations (22)–(28) by replacing xi with Y .
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Appendix B

Let us transform the order parameter equations for the mixed state in model 1 into the equation
in one variable. We introduce yν in the following equation:

yν = m1,ν

√
2αr

. (B1)

Since yν = y (ν = 1, 2, 3, . . . , s) holds in the mixed state, we can express the order parameter
equations for the mixed state by the following equation in y:

)(y, α, b, s) =
s∑

ν=1

(
λ2

ν

(w(y) − λνθ(y))2

)
− 1

= 0 (B2)

θ(y) =
√

2

πα

〈
exp

(
−

( s∑
ν

yξ 1,ν

)2)〉
ξ1

(B3)

w(y) = 1√
2αy

〈
ξ 1,νerf

( s∑
ν

yξ 1,ν

)〉
ξ1

(B4)

where λν is the νth eigenvalue of the matrix B. The order parameter equations for the mixed
states in model 2 can be also transformed into the equation in one variable as follows:

0(y, α, b, s) =
√

2αy

(√
2

πα

〈
exp

(
−

( s∑
ν

yξ 1,ν

)2)〉
ξ1

+ 1

)

−
〈
ξ 1,νerf

( s∑
ν

yξ 1,ν

)〉
ξ1

= 0. (B5)
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